
The Math Behind TrueSkill  

Abstract 
This paper accompanies my “Computing Your 

Skill” blog post at moserware.com. It contains 

selected portions from my paper notebook that I 

kept on my several-month journey to understand 

the TrueSkill algorithm. This paper is woefully 

incomplete, but hopefully is better than nothing. 

Most math papers error on the side of being too 

terse with derivations; this approach makes it 

sometimes hard to follow how the author got 

from step to step. In this paper, I took the 

opposite approach and erred on the side of being 

explicit at the expense of using extra space. 

I created a general order of concepts in this paper, but you’re welcome to skip around as you see fit. 

Prerequisites 
This paper assumes that you have had some exposure to math through the calculus level. In addition, it 

helps if you have had exposure with matrices and statistics.  

I tried to help with some prerequisites by adding hyperlinks to refreshers on the basics (mainly to 

Wikipedia entries). 

Version 
This paper was last edited on 5/28/2011. I will plan to update it as needed based on questions or further 

research. Feel free to send in suggestions for updates. 
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Notation 
Symbol Meaning 

     Cumulative distribution function represented by the Greek letter   
(phi). This is typically the area under the distribution curve from 
negative infinity to x. 

          Normal distribution with mean   and standard deviation of  . The 
variance is   . This distribution is also known as a “Gaussian 
distribution.” 

  The mean, also known as the expected value of a distribution. It’s 
represented by the Greek letter  
  (mu). 

  The standard deviation of a probability distribution. This gives an 
idea for how far apart samples are spread apart. For this reason, it’s 
also referred to as the “spread.” It’s represented by the Greek letter  
  (sigma). 

    The determinant of the   matrix. 

    The inverse of the   matrix. 

   The transpose of the   matrix. 

       
 

 

 
The integral of a function between “a” and “b.” I find it helpful to 
think of an integral as a generic way of multiplying. The presence of 
this in this paper proves that calculus is actually useful in real life  

       The exponential function    . It is the basic rate of growth for things 
that grow continuously.  

     
 

The marginal probability that “X” will occur. This is also known as the 
“probability mass function” for discrete events (ones you can count). 
For continuous values, we call it the “probability density function.” 
We use an uppercase “P” when X is discrete and a lowercase “p” 
when “X” is continuous. 

       The conditional probability of the event “E” occurring given that “F” 
has occurred. 

       The probability of that the events “E” and “F” will both occur. 

            The “ ” represents the Indicator Function. You can effectively ignore 
this detail and just focus on the bit inside the braces.  

 
  

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Invertible_matrix
http://en.wikipedia.org/wiki/Transpose
http://betterexplained.com/articles/a-calculus-analogy-integrals-as-multiplication/
http://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/
http://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Indicator_function
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Bernoulli Trials 
I wrote about flipping a coin in the blog post as a means of building up to probability distributions. I was 

technically referring to Bernoulli trials leading to a binomial distribution. An outcome in a Bernoulli trial 

can be a success or a failure. Conceptually, if you did an infinite number of trials, you’ll arrive at a 

Gaussian distribution.1 

Because a fair coin is expected to have a 50% chance of getting either side, we arbitrarily pick heads to 

be a “success” and tails to be a “failure.” The probability of getting “k” heads in “n” trials is given by this 

formula: 

 
 

 
            

where 

 
 

 
   

  

        
 

is the binomial coefficient that is read as “the number of ways of choosing ‘k’ items from a population of 
size ‘n’” or simply “n choose k.” Additionally, where p = 0.5 to indicate a 50% chance of heads. 
The last important thing is that the variance of a binomial distribution is: 

        

This implies that the standard deviation is: 

         

In the post, I implied without proof that the standard deviation of a taking the count of heads after 1000 

flips was about 16. This was derived as: 

                                             

                                                           

1
 I say “conceptually” because this is roughly what you’d see. It’s important to realize that Gaussians are 

continuous whereas my bar chart histograms showing outcomes were not because they had spaces between each 
discrete sample. The rough idea is there though if you imagine that the gap between each sample shrinks to zero. 

http://en.wikipedia.org/wiki/Bernoulli_trial
http://en.wikipedia.org/wiki/Binomial_distribution


6 
 

Gaussian Distribution (a.k.a. “Normal Distribution” or “Bell Curve”) 

 

For a single dimension, the value of the normal distribution curve at a given point (e.g. the probability 

density) is given by this equation: 

           
 

    
 

 
 

         

 

And in higher dimensions: 

         
 

    
 
 

 
 

    
  

 
 
              

 

Here,   is a matrix whose diagonal values are the variances and D is the number of dimensions. Notice 

that if D is one, you get the simplified equation above.  

As mentioned in the post, here’s an example of a Gaussian in higher dimensions (D=2 in this case): 
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Note that the color of the 2D plot below it indicates the taller parts of the plot, indicating stronger 

probabilities. 

For the curious, I created the 3D image using GNU Plot with the following commands: 

 

set pm3d at b 

set ticslevel 0.4 

set isosample 40,40 

splot 1*exp(-(.1*(x-0)*(x-0) + 2 * 0*(x-0)*(y-0) + .1*(y-0)*(y-0))) 

Standard Normal Distribution 
One interesting observation from the Wikipedia page is: 

[A]ny other normal distribution can be regarded as a version of the standard normal distribution that has 

been stretched horizontally by a factor σ and then translated rightward by a distance μ. Thus, μ specifies 

the position of the bell curve’s central peak, and σ specifies the “width” of the bell curve. 

Representing a Gaussian Using Precision and Precision Adjusted Mean 
As mentioned on page 5 of the TrueSkill paper (1), it’s sometimes more convenient to represent a 

Gaussian by the “precision” and the “precision adjusted mean.” 

http://www.gnuplot.info/
http://en.wikipedia.org/wiki/Normal_distribution


8 
 

Precision 
Precision is just the inverse of the variance. It is represented by the Greek letter  , which is somewhat 

unfortunate because it could be confused with the math constant that is approximately 3.14. 

Specifically: 

        
 

  
 

Precision Adjusted Mean 
The precision adjusted mean is simply the precision multiplied by the mean. It is represented by the 

Greek letter  . Specifically: 

      

Example 
To see why it’s convenient to use precision, let’s look at multiplication of Gaussians using both methods.  

First, from the Multiplying Gaussians section in the Appendix: Fun Stuff with Gaussians, we find: 

                    
    

      
 

  
    

   
  

   
 

  
    

   

Using precision, this is simply: 

                                 

 

As you can see, it’s an impressive simplification and it’s the reason why this representation is used in the 

code. Just to prove it’s valid, we can verify it quickly. 

 

First, let’s verify the precision: 

       
 

  
 

 
 

  
 

 
 

   
  

In the Appendix: Fun Stuff with Gaussians, we derive this: 

     
  

   
 

  
    

  

If we substitute this in, we’ll obtain: 
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To prove that this is valid, simply multiply both sides by   
   

 : 

   
   

   
 

  
 

 
 

  
      

   
   

  
    

 

  
   

   

  
   

 

  
 

 
  

   
 

  
 

    
   

   
  

    
 

  
   

   

  
    

    
    

  

… and we see that we have proven the equality. 

Precision adjusted mean is a little harder: 

       
  

  
 

 
  

  
 

 
   

   
  

Substituting both the mean a variance values we proved in the Appendix: Fun Stuff with Gaussians: 

  

  
 

 
  

  
 

 

    
      

 

  
    

  

  
   

 

  
    

 

 
    

      
 

  
    

   
  

    
 

  
   

  
    

      
 

  
   

  

Multiplying both sides: 

   
   

   
  

  
 

 
  

  
      

   
   

    
      

 

  
   

   

  
   

   

  
 

 
  

   
   

  
 

     
      

  

  
      

        
      

  

And once again, we’ve proven equality. It’s amazing how simple multiplication and division are using this 

little substitution trick. 

 

For completeness: 



10 
 

        

        
                

 

The proof is similar to the one above. 

Partial Update 
A partial update is when we only apply a percentage of the full update. This is achieved by representing 

a player’s skill in terms of precision and precision adjusted mean that we defined earlier. 

Let’s say that the TrueSkill algorithm tells us that a player’s new full skill update should be: 

             

Now, let’s assume that instead of a “full” update, we just want a “partial” update. We can pick some 

value between 0% and 100% to denote how much of an update we want. We’ll call that percentage “ .”  

Now we define the partial update function: 

                                                                       

Thus, a partial update adds only a percentage of the full update. 

Using Maxima to do the grunt work, we can transform this back into the normal form of a Gaussian 

using mean and standard deviation: 

                      
 

   
 

    
  

 
    

   
 

    
 

 
        

      
            

 
  

And 

   
                 

           
 

         
       

 
 

              
           

 

         
       

 
 

The equations in traditional form look much more complicated, but if you look closely, you can sort of 

see how the percentage multiplier affects the outcome. If nothing else, look how the 0% and 100% cases 

simplify.  

Paired Comparisons 
Page 1 of the TrueSkill paper (1) briefly mentions Thurstone Case V and Bradley-Terry pairwise 

comparisons. I won’t go into details here either, but it’s interesting to research this, especially Thurstone 

Case V and how it was developed in the 1920s in the context of how children compare the severity of 

crimes. 

http://maxima.sourceforge.net/
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Elo Curves 
Arpad Elo originally used a Gaussian distribution, but the chess folks found that a logistic curve fits real 

data better (and it’s easier to program as well since Gaussian functions aren’t built into most standard 

math libraries).  

As you can see in the accompanying source code, the concepts are identical; it’s just that a different 

curve is used. 

The difference can be seen: 

 

Elo Skill Update 
The first page of the TrueSkill (1) paper shows the Elo equations of: 

                 
     

   
  

Leading to an update equation of: 

       
   

 
   

     

   
   

It seems clear that the       part comes from the fact that we’re dealing with the subtraction of two 

Gaussian curves (Adding and Subtracting Gaussians) that have the same standard deviation which will 

lead to a combined standard deviation of    . By dividng out the    , we get a standard normal 

leading to a traditional cumulative distribution function. Effectively, it’s telling us how many standard 

deviations away from the mean. 

0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

Logistic

Gaussian
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If you’re curious about the seemingly obscure “   ” bit, remember that it came from the subtraction 

convolution of two Gaussians that have the same   standard deviation:  

        
    

  

        

      

     

 

See the Adding and Subtracting Gaussians section in the appendix for more details. 

K-Factor 
The most curious part I found about the Elo update equation is the presence of the   . This comes from 

approximating the cumulative distribution function in the region of +-1 standard deviation by a straight 

line: 

     
 

 
 

 

   
        

 The reasoning is that you shouldn’t play someone beyond a standard deviation away from you, so the 

linearized approximation is ok. You can visually see that this is a reasonable linear approximation under 

these conditions: 

 

As mentioned in the post, here’s how the K-factor updates as the alpha value changes from 0% to 25%: 
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Note that typical values for α are between 5% and 10% leading to a K-factor of approximately 10 to 30. 

The higher your chess ranking, the less likely you want to risk it fluctuating much. For this reason, games 

with grandmasters typically have a smaller α and therefore a smaller K-factor. 

Elo Example 
In the post, I used an example of playing a beginner. Here’s how the values were updated. 

My new score: 

         

          
    

 
   

         

   
   

          
 

 
   

   

      
   

             
 

   
   

           
 

   
  

             

          



14 
 

      

Likewise, the beginner’s rating would now be: 

         

          
   

 
   

         

   
   

          
 

 
   

    

      
   

              
  

  
   

             

          

      

Beta (β): The Skill Class Width 

 

In (2), TrueSkill co-inventor Ralf Herbrich gives a good definition of β as defining the length of the “skill 

chain.” If a game has a wide range of skills, then β will tell you how wide each link is in the skill chain. 

This can also be thought of how wide (in terms of skill points) each skill class. 

Similiarly, β tells us the number of skill points a person must have above someone else to identify an 

80% probability of win against that person.  

For example, if β is 4 then a player Alice with a skill of “30” will tend to win against Bob who has a skill of 

“26” approximately 80% of the time. 

Tau (τ): The Additive Dynamics Factor 
Without τ, the TrueSkill algorithm would always cause the player’s standard deviation ( ) term to shrink 

and therefore become more certain about a player. Before skill updates are calculated, we add in    to 

the player’s skill variance (  ). This ensures that the game retains “dynamics.” That is, the τ parameter 
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determines how easy it will be for a player to move up and down a leaderboard. A larger τ will tend to 

cause more volatility of player positions. 

TrueSkill Default Values 
As mentioned on page 8 of the TrueSkill paper (1), the initial values for a player are: 

        
   

  

 
  

 

 

This leads to an initial TrueSkill (    ) of zero. 

The default values for a game are: 

    
  

 
 

 

     
  

   
 

 

 

This leads to reasonable dynamics, but you might need to adjust as needed. 

Calculating a Leaderboard 
One of the most important aspects of ranking is displaying a leaderboard. As mentioned on page 8 of 

the TrueSkill paper (1), one way of doing this is to compute the conservative skill estimate for each 

player (the TrueSkill) of      then sort by that. 

Draw Margin 
The draw margin is discussed on page 6 of the TrueSkill paper (1). We see it listed as 

                    
 

        
    

  

        
     

 

        
    

Since the rest of the TrueSkill equations require that we know the draw margin ( ) we’ll solve for it in 

terms of the draw probability (     ) and the inverse cumulative distribution function (   ): 
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This equation is used inside the source code for computing the draw margin from a game’s draw 

probability. 

Bayesian Probability 
Bayesian probability begins with the definition of conditional probability: 

                  

This means that the probability of both “E” and “F” occurring is the probability of “E” given that “F” has 

occurred multiplied by the probability of “F” occurring. This makes intuitive sense. 

Note that we could have just as easily written this as: 

                  

Setting these two equal, we get: 

                              

                      

Rearranging terms we get: 

       
          

    
 

This is known as Bayes formula. The author of (3) puts it this way: 

           
                 

        
 

That is, our new belief (the posterior) of the probability of “E” given that we’ve observed “F” is the 

product of the likelihood of observing “F” given that “E” has been observed multiplied by our prior belief 

of “E” occurring. In order to normalize things (e.g. make sure everything sums to 1), we divide out by the 

“evidence” which is the probability of “F” occurring, regardless of what we’ve observed. 

The fundamental idea is that the Bayesian approach multiplies likelihood by a prior to obtain a 

posterior.  

Visual Explanation: 3D 
Here is an example of what things look like in 3D: 
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Prior 

 

Likelihood 

 

Posterior 

 

 

Visual Explanation: 2D 
Here is the same example in 2D: 
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Prior 

 

Likelihood: 

 

Posterior 

 

 

Bayesian Example 1: Probability of Cancer 
What is the probability that you actually have breast cancer (  ) given that your mammogram test 

indicates you have cancer (  )? That is, we want to know         . 
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Let’s borrow from (4) and assume you have the following prior information on breast cancer: 

 1% of women have breast cancer (           ) 

o This implies that 99% of women do not have cancer (           ) 

 Mammograms detect cancer 80% of the time when it is actually present (              )  

o This implies that mammograms do not indicate cancer 20% of the time when it is 

present:                . 

 9.6% of mammograms falsely report that you have cancer when you actually do not have it 

(               ).  

o This implies that there is a 90.4% chance of correctly reporting that you don’t have 

cancer when you indeed do not have cancer (               ). 

Bayes’ formula gives us: 

         
              

                              
 

Notice how this is the likelihood of having a positive cancer test result given that you actually have 

cancer multiplied by the prior probability of having cancer. In addition, we divide by the evidence which 

is the probability of getting any positive test result. 

Using the actual values gives us: 

         
         

                     
 

 
     

              
 

 
     

       
 

       

       

Given the relatively high false-positive rate of this test, we only have a 7.76% chance of actually having 

cancer if we have a positive test result.  This is somewhat non-intuitive. 

For more details on this, see (4). 

Using a Bayesian Decision Tree 

Another way of looking at the above example is to represent it as a tree where each branching point 

represents a decision that could go several ways.  

 

For example: 
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The far left of the tree represents the two possibilities of test outcomes and the next decision 

represents if you have cancer.  Note that the top outcome is what we calculated earlier. 

Bayesian Example 2: Probability of Spam 
What is the probability that an email is spam given the words of the email? 

Let’s say you get an email that starts off like this: 

First I must solicit your confidence in this transaction. This is by virtue of its nature as being 

utterly confidential and top secret. We are top officials of the Federal Government Contract 

Review Panel who are interested in importation of goods into our country with funds which are 

presently trapped in Nigeria. In order to commence this business we solicit your assistance to 

enable us RECIEVE the said trapped funds ABROAD. 

A computer can look at this email and break it up into words and then calculate the probability of it 

being spam using Bayes’ formula: 

              
                    

                                        
 

 

Note that in this equation, I refer to “ham” as the equivalent of “not spam.” 

From prior experience, we know that 90% of our email is spam, so             . Also, in the past 

we’ve had users train our filter by classifying email as either “spam” or “ham.” From this training, we 

have likelihoods for              and            . 

Additionally, we’ll use a simpler algorithm called “Naïve Bayes” because we’re going to make a naïve 

assumption that words in this email are independent events. This is definitely not true for English. For 

example, “Federal Government” is much more likely than a phrase like “Federal utterly,” but we’ll find 

out that it doesn’t matter much for classification purposes. 

Therefore, the determination of “spaminess” of this particular email can be done like this: 
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The last major step is to define some cutoff probability where anything above this value is classified as 

spam.  The cutoff should be high enough to limit the chance of false positives (e.g. your friend that 

always forwards you spammy-like emails) and low enough to actually remove most spam. 

 

Each time that the system is wrong, you can improve its accuracy by specifically marking something as 

spam and thus adding more data. 

 

(Note that we ignore the casing of the words so that “NIGERIA=Nigeria=Nigeria.” Fancier filters might 

ignore suffixes of words too, but the idea is the same.) 

Factor Graphs 
As mentioned in the post, here’s an example of a TrueSkill factor graph: 

 

Factor graphs are described in detail in (5), but the basic idea is that a factor graph breaks up a joint 

probability distribution into a graph with two types of nodes (called “bipartite”) of factors (boxes) and 

variables (circles). The joint distribution is the product of the factors: 
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where    represents the variables connected to a factor    and   is a normalization constant. 

The core idea of factor graphs is the Sum-Product Update Rule: 

The message sent from a node v on an edge e is the product of the local function at v (or the unit 

function if v is a variable node) with all messages received at v on edges other than e, summarized for 

the variable associated with e. (5) 

The TrueSkill paper (1) shows the important three equations related to factor graphs: 

             
    

     

 

This tells us that the value of the marginal at    is just the product of the incoming messages  

         
                       

   

 

This indicates that the value of a message from a factor to a variable is the sum of the product of all 

other messages except the one we’re trying to compute along with the value of the function for all v’s 

except for the jth item. 

                     

      
    

 

This last equation tells us the message going from variable    to the factor   is a product of the other 

messages. 

In (5), these equations are provided as the “variable to local function” message: 

                 

          

 

where      represents the neighbors of the   variable. In addition, there is the “local function to 

variable” equation: 

                      

          

 

    

 

Again, many more details are provided in (5) along with examples. 
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Scheduling on a Factor Graph 
In the accompanying source code, there are several classes devoted to “scheduling” things on a factor 

graph. The “schedule” is just a means of making sure messages are passing between factors. 

Now, we need to investigate each factor in the TrueSkill factor graph. We’ll do that next. 

Gaussian Prior Factors 
The prior factor was represented in the post as the black box in this picture: 

 

The prior factor is the easiest to understand. Remember our discussion on precision and precision 

adjusted mean: 

        
 

  
 

      
 

  
  

The goal of the prior factor is to take the Gaussian represented by a mean “ ” and variance “  ” and 

update the values to reflect that: 

  
        

 

  
 

  
        

 

  
 

These match the update equations given in the TrueSkill paper (1). 

Factorizing Gaussian Prior 
Page 2 of the TrueSkill paper (1) mentions the assumption of a “factorising Gaussian prior distribution” 

of: 
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This makes sense because the factor graph itself is one big multiplication to obtain a joint distribution. In 

this case, the factorizing Gaussian is a multiplication of these prior factors. 

Gaussian Likelihood Factors 
The Gaussian Likelihood factor was presented in the post as the black box in: 

 

The basic idea is that we have an existing Gaussian variable   and then we want to come up with a new 

Gaussian   that incorporates the   uncertainty:            

We’re told: 

                   
  

  
 

             
 

 
 

     
 
  

  

 
 

  
  

  
 

 
 

  
 

  
  

  

  
 

 
 

  
    

  
 

 
  

 

  
    

  

It appears that   is a multiplier that will always be less than 1. It adds in the    variance appropriately: 

    
                

  
 

  
    

 
 

  
  

 

  
    

 

Likewise, for precision adjusted mean: 

    
                

  
 

  
    

 
  

  
  

  

  
    

 

Gaussian Weighted Sum Factors 
The Gaussian Weighted Sum factor was presented in the post as the black box in: 
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In addition, this factor was used for team differences: 

 

This factor takes a bunch of Gaussians and then sums them together. Let’s assume that the sum variable 

is   . We’ll also assume that the variables we want to sum are             . In addition, we’ll assume 

each sum is weighted by a factor   . This means we can write the sum as: 

                                  

In the appendix we cover Adding and Subtracting Gaussians in detail, but here we’ll just use that result 

and extend it to sum an arbitrary number of Gaussians. This is called the “Normal Sum Distribution” and 

is covered in (6). The key result is that the sum of Gaussians is also Gaussian with a mean: 

       

 

   

 

and whose variance is: 

      
   

 

 

   

 

Remember how earlier we covered how it is sometimes easier to work with precision ( ) and precision 

mean ( )? We’ll need to convert the above results into that format: 
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The precision mean will multiply the above precision by the mean: 

                        

 

   

  

However, we can rewrite mean as the precision mean divided by the precision: 

  
 

 
 

This will give us: 

                 

 

   

            

  

  

 

   

  

This gives a hint at the weighted sum update equations given in the TrueSkill paper. 

Now, let’s solve for    by subtracting from both sides: 

                                 

Then, we subtract out   : 

                                  

Now, we just divide by    : 

   
  

   
       

    

   
       

  

   
   

 

   
   

Now, we can simplify this by factoring out the negative value: 

    
  

  
       

    

  
      

  

  
   

 

  
   

Similarly, we can solve for the other variables like   : 
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… and   : 

                                 

                                  

    
  

  
    

  

  
      

    

  
     

 

  
   

Note that we can simplify this by factoring out the 
 

  
 that is common to all terms: 

   
 

  

                              

We can also rewrite this in vector notation: 

                      

Where: 

  
 

  
 

 
 
 
 
 

   

   

 
     

   
 
 
 
 

 

It is the above compact notation that we see in the TrueSkill paper (1). 

Partial Play 
In (2), Ralf Herbrich discusses how TrueSkill supports the concept of “partial play.” This allows the 

algorithm to properly handle situations where a player wasn’t present for the entire duration of the 

game. This is implemented in the team performance Gaussian weighted sum factor where the weights 

are the percentage of the time a player was present. 

The accompanying source code supports partial play. Refer to that for more details. 

Gaussian Comparison Factors 
The comparison factors were presented in the post in both their non-drawn and drawn versions: 
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The bottom of the TrueSkill factor graph consists of comparison factors depending on the actual 

observed outcome of the game. These functions make use of “v” and “w” functions that I refer to as 

TruncatedGaussianCorrectionFunctions in the code. 

The full details of these functions are described in (7), but the basic idea is that you have a three 

dimensional Gaussian created by the performances of the two teams. Visually, it looks like this: 

 

Figure 1 TrueSkill Gaussians image by Ralf Herbrich and Thore Graepel, Microsoft Research Cambridge. 

In the above picture, the red team is playing the blue team. If the red team wins, we “chop” the 3D 

Gaussian by setting the blue losing team portion to all zeros.  This process would leave us with a 

“truncated Gaussian” that we approximate with another Gaussian using a technique called Expectation 

Propagation. This is sort of hand-wavy description, but the full details are described in (7). 
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Even though this is probably the most complicated part of the algorithm, you can still get an idea for 

what’s happening by looking closely at the simplified two-player equations in (8).  

We’ll cover each one in the next two sections. 

Mean Additive Truncated Gaussian Function: “v” 
The first function is “v” and it helps to determine how much to update the mean after a win or loss: 

                  
       

 

 
   

                 

 
 
 

 
  

                
      

 

 
   

                 

 
 
 

 
  

Because we add to a player’s existing mean, we’ll refer to it as the “additive” factor. 

Note that in all these equations, we have a normalizing “c” value: 

              
         

  

Non-draw 

In the TrueSkill paper, we’re told that the non-draw version of “v” has this equation: 

          
      

      
 

The best way to get a feel for this and others is to look at a plot of it with respect to “ ”: 

 
Here, you can see that if “t” is negative, there is a larger update. A negative “t” indicates an “upset” 

victory meaning that the expected person didn’t win. Again, looking at 
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shows us that a negative “t” implies that the winner’s mean was less than the loser’s mean. Before the 

match, the system expects a non-negative “t” based on what it had already learned.  A positive “t” value 

indicates an expected outcome and thus little need for an update (as reflected in the graph). 

In all of these functions, the ε value indicates the “draw margin.” This is a non-intuitive way to think 

about it. If we use the equation we derived earlier, we can calculate the corresponding draw probability 

for a given ε and then use that instead. Here’s a plot that shows how the draw probability affects “v”: 

 

Note that larger draw probabilities lead to larger updates for this non-drawn case. Another way to think 

about this is that we’ve observed a win. If we had higher draw probability, it would have been less likely 

to actually observe a win, so we’ll have a larger update because it was unexpected. 

Draw Version 

TrueSkill explicitly models draws. This means that we have separate update equations for draws. In 

particular, the draw version of “v” is: 

            
               

              
 

It has a corresponding plot of: 

0

2

4

6

8

10

12

-6 -4 -2 0 2 4 6

5%

25%

50%



31 
 

 

We can easily convert this to draw probabilities using what we already know: 

 

As you can see, if “t” is negative, then we have an “upset” where we were expecting the better player to 

win, but they ended up having a draw against a worse player. If the probability of a draw is low, the 

update is bigger because the probability of actually observing a draw was low. 

Variance Multiplicative Function: “w” 
If we look at the equations given in (8) for updating the standard deviation, we see: 
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Because we multiply the variance by “w”, we can consider “w” to be a multiplicative factor. Like “v”, it 

has a drawn and non-drawn version: 

Non-drawn 

The non-drawn version is defined as: 

                                               

It has this plot: 

 

Converting to draw probabilities gives us: 
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This tells that that we should reduce our estimate of a player’s standard deviation if we observe a big 

upset (e.g. a much stronger player losing to a weaker player). Additionally, the more likely a draw was to 

happen, the more we should reduce the standard deviation (e.g. the uncertainty) because it was an 

unexpected event. 

Drawn 

The drawn version of “w” is the most complicated: 

                         
       

                         

              
 

It has a nice symmetrical plot: 

 

Again, converting to draw probabilities: 
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Here we can see that the smallest update occurs when players are expected to draw. Otherwise, it’s 

symmetric with respect to the difference. 

Match Quality 
On page 8 of the TrueSkill paper (1), we read: 

Pairwise matchmaking of players is performed using a match quality criterion derived as the draw 

probability relative to the highest possible draw probability in the limit    . 

I was confused after reading this and wrote the authors for clarity. Ralf Herbrich was kind to offer 

additional information. In particular, the paper refers to this limit: 

               
   

                    
   

   

   

This integral is effectively summing up the Gaussian probability density function in the region of the 

draw margin. 

Symbol Meaning 

  A vector of all of the skill means 

  A matrix whose diagonal values are the variances (  ) of each of the players. 

  The game’s beta factor mentioned earlier in this paper. 

  The player-team assignment and comparison matrix 

The “A” Matrix 
The   matrix requires some further explanation since it combines team assignments and comparisons. It 

is a matrix whose rows represent players and whose columns represent team comparisons. This matrix 

is also aware of partial play (mentioned earlier).  In addition, it’s important to realize that since team 

comparisons are made, you’ll always have one less column than teams since “n” teams have “n-1” 

successive pairwise comparisons.  

An example can go a long way. Consider a 3 team game where team 1 just consists of player 1, team 2 is 

player 2 and player 3, and team 3 is just player 4. Furthermore, player 2 and player 3 on team 2 played 

25% and 75% of the time respectively (e.g. partial play), the   matrix for this situation is: 

 

      
          
          

      

  

Note how we have positive values for the current team and negative values for the next team in the 

comparison. 
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Match Quality Further Derivation 
With further insight from Ralf, I was able to follow the derivation. We take the limit mentioned above 

and divide it by a normalizing value indicating a perfect match (e.g. all the teams have the same team 

skill, that is      ): 

                  
                   

             
  

We can calculate this value using the multivariate Gaussian equation we saw earlier of: 

         
 

    
 
 

 
 

    
  

 
 
              

 

We can now substitute the values: 
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And from here you can reduce it to the equation that Ralf gave me: 

     
 

 
                        

       

             
 

It’s interesting to see what happens in the simple case of two players. In this case, we have: 

   
  

  
     

  
  

   
      

 
  

  

If we plug these into the equation we just derived, we get: 

      
 

 
 
  

  
 
 

 
 

  
     

 
  

 
 

 
 

  
    

 
  

 
 

 
  

  

   
   

 
  

  

  

 
 

  
 
 

 
  

  
  

  

    
 

  
 
 

 
 

  
  

    
 

  
 
 

 
 

  
    

 
  

 
 

 
  

  

   
   

 
  

  

 

We remember from our matrix math days that: 

 
 

  
 
 

 
 

  
         

 
  

              

This leads to the simplification: 

      
 

 
 
  

  
 
 

 
 

  
        

 
  

 
 

 
  

  

   
   

 
  

  

  

 
 

  
 
 

 
  

  
  

 
 

     

       
 

  
 
 

 
  

  

   
   

 
  

  

 

Using normal matrix-multiplication, we can simplify further: 

      
 

 
                

    
   

 
  

  
  

 
 

  
 
 

 
  

  
    

     

         
    

   
 

  
  

 

      
 

 
               

     
  

  
          

     

        
     

  
 

And now we’re back to normal real numbers (or you might think of them as 1x1 matrices).  The inverse 

and determinant of a 1x1 matrix is simple: 
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Giving us this simplification: 

      
 

 

       
 

       
      

    
   

       
     

  

That further simplifies to: 

      
       

 

         
      

  
   

   

       
     

  

Almost surprisingly, all the simplification works and we’re left with the match quality equation 4.1 in the 

TrueSkill paper for two players: 

                          
   

      
    

       
       

 

        
    

  
  

Had we not looked at the general case, this equation would probably not make as much sense. 

Kullback-Leibler Divergence 
Page 4 of the TrueSkill paper (1) mentions minimizing Kullback-Leibler divergence (a.k.a. “K-L 

divergence”).  One way to think about this is to think of two probability distributions   and  . For 

example, these could be complicated shapes or maybe something as simple as a Gaussian distribution.   

Assume that   is the real distribution and that   is the model that approximates it. The Kullback-Leibler 

divergence is a distance measure of how much extra information is required to add to a sample from   

(the approximation) to get the actual value from   (the real thing). Thus, when the TrueSkill authors 

speak of minimizing this metric, it means that their Gaussian approximation ( ) is similar to the real 

thing ( ). 

In TrueSkill “ ” is the 3D truncated Gaussian we talked about earlier and “ ” is the approximated 

Gaussian. 

Convergence Properties 
On page 7 of the TrueSkill paper (1), the authors write: 

TrueSkill comes close to the information theoretic limit of          bits to encode a ranking of   players. 

For 8 player games, the information theoretic limit is                 games per player on average 

and the observed convergence for these two players is     games! 
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This makes some intuitive sense because the simplest way of encoding a ranking is to assign each player 

a number between 1 and “n” (or technically, “0” and “n-1”). The number of bits required to encode 

numbers of size “n” is        . 

What makes less sense is that 8 player games would require: 

       

       
   games 

I’m assuming that “n” was known for the Halo game beta described and was somewhere around 

                            players. 

This number seems to coincide with a medium-sized beta group for free-for-all. 

Appendix: Fun Stuff with Gaussians 
Throughout this paper and in the post, I’ve hinted at some properties of Gaussians. The derivations are 

somewhat tedious, so I left them for the end. In this section, I’ll expand on them. 

Deriving the Gaussian Normalization Constant 
The normalization constant for a Gaussian is what we have to divide it by to ensure that the sum of all 

probabilities (e.g. the integral) is one. 

Borrowing from (9), we can see that a Gaussian can be written like this: 

       
 

  

    where          

Note that this is equivalent to  

       
 

      

    

Because we want the area under the curve, any non-zero value for   would just shift the graph on the x-

axis by  . Since the graph goes forever on each side, this really makes it not matter much. This means 

we can ignore the mean in terms calculating the integration constant. Additionally, we can introduce 

   
 

    to help simplify things. 

The area under the curve is not 1, but we can figure it out using an integration trick: 

           
  

 

  

 

Although somewhat counter-intuitive, we can actually simplify things by taking the square of this: 
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Once again, we can simplify by making it slightly more complicated by introducing another variable. 

Instead of using the   variable twice, we can make the second integral use  : 

              
  

 

  

        
  

 

  

  

This can be converted a double integral that you’d have learned about in a third-semester calculus class: 

             
 

  

     
  

 

  

   

             
 

  

  
 

  

   

This is effectively integrating across the entire Cartesian plane (the one with x and y axis). We can 

rethink about this in terms of polar coordinates. This transforms the integral into thinking of it as 

integrating around a circle. Instead of integrating to plus and minus infinity on each axis, we think of it as 

a circle with a radius that goes from 0 to infinity and then we go around the entire circle. This can be 

expressed as: 

         

Where: 

            

The limits cover the entire circle of the polar coordinate system: 

        ,         

After the transform to polar coordinates, the integral becomes: 

              
    

 

 

  

 

 

The   isn’t used by the inner integral, so we can split it up as: 

         
  

 

       
  

 

 

 

      
      

     

  
 
 

 

  

           
   

 
     

  
 

  

  
  

http://en.wikipedia.org/wiki/Polar_coordinate_system
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Now, all we have to do is take the square root: 

      
 

 
 

We recall from earlier that    
 

   , this means: 

      
 

 
 

 

 

 
   

            

 

 

Thus, you often see a “normalized” Gaussian distribution where we divide out this constant up front: 

     
 

    
 

 
  

    

 

Gaussian Moments 
In reading about Gaussians, you’ll typically run across the term “moments” and “expectations.” The 

thing to keep in mind is the order of the moment. For example, the first “moment” is the mean: 

                             
 

  

 

We can go up to higher “moments” by increasing the power of x. For example, the second moment is: 

                      
 

  

       

And if you do some symbol manipulation, you can get to variance: 

                                   

Other moments can be interesting, but we’ll ignore those for now. 

Multiplying Gaussians 
Multiplying a distribution sounds odd, but it sort of makes sense. We borrow from (10) 
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We can go ahead and just multiply these two directly: 

           
 

     

 
 

      
 

   
 

  
 

     

 
 

      
 

   
 

  

Collecting terms 

  
 

     

 
 

     

   
 

      
 

   
 

  
 

      
 

   
 

  

Multiplying the parts: 

 
 

      
 

 
      

 

   
  

      
 

   
 

 

Making the exponent look more familiar gives:  

 
 

      
 

  
      

 

   
  

      
 

   
  

 

We can expand the exponent: 

 
 

      
 

  
            

   
  

            

   
  

 

 
 

      
 

  
              

 

   
  

              
 

   
  

 

 
 

      
 

  
          

 

   
  

          
 

   
  

 

Make the exponent have common terms so we can have a consistent denominator: 

 
 

      
 

  
           

    
 

   
   

  
           

    
 

   
   

  

 

Now we can combine and simplify to a single denominator: 

 
 

      
 

  
           

    
             

    
 

   
   

  

 

Now we expand the terms: 

 
 

      
 

  
    

        
    

   
      

        
    

   
 

   
   

  

 

Group things by factors of  : 

 
 

      
 

  
    

      
        

        
    

   
    

   
 

   
   

  

 

And factor things: 



42 
 

 
 

      
 

  
   

    
           

      
      

   
    

   
 

   
   

  

 

Each of the  ’s is greater than 0, so we can divide the top and bottom by the coefficient of   : 

 
 

      
 

 

 

  
 

 
  

    
 

  
    

       
    

      
 

  
    

    
  

   
    

   
 

  
    

 

  
  

   
 

  
    

  
 

  
 

 

 
 

      
 

 

 

  
 

    
    

      
 

  
    

   
  

   
    

   
 

  
    

 

 
  

   
 

  
    

 
 

  
 

 

Now we’re going to do a little pattern matching trick by looking at the equation of a normal Gaussian: 

     
 

    
 

 
      

    
 

    
 

 
         

    

The math works out that the coefficients of the terms in the exponent will have to be equal. This means 

that the mean and standard deviation of our product of two Gaussians can be identified as: 
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Now, we sort of cheated on the pattern matching because we ignored a lot of the constants (e.g. values 

that don’t depend on  ). We’ll fix that up by subtracting a   that will represent all the messy constants 

we ignored. This uses a technique called “completing the square” as described in (11) 

          
 

      
 

 

 

  
 

    
    

      
 

  
    

   
  

   
    

   
 

  
    

 

 
  

   
 

  
    

 
 

  
 

 

 
 

      
 

  
            

 

    
    

 

 
 

      
 

  
       

 

    
    

 

 
 

      
 

 
       

 

    
   

 

Using a basic rule on exponents, we can expand the exponent term to: 

 
 

      
 

 
       

 

    
 

    

And simplify slightly to: 
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Adding and Subtracting Gaussians 
How do you combine two functions similar to “adding” and “subtracting?” Many ways are possible, but 

in many applied areas, the “convolution” operator is used. Terry Tao defines (12) convolution this way:  

I remember as a graduate student that Ingrid Daubechies frequently referred to convolution by a bump 

function as "blurring" - its effect on images is similar to what a short-sighted person experiences when 

taking off his or her glasses (and, indeed, if one works through the geometric optics, convolution is not a 

bad first approximation for this effect). I found this to be very helpful, not just for understanding 

convolution per se, but as a lesson that one should try to use physical intuition to model mathematical 

concepts whenever one can. 

More generally, if one thinks of functions as fuzzy versions of points, then convolution is the fuzzy version 

of addition (or sometimes multiplication, depending on the context). The probabilistic interpretation is 

one example of this (where the fuzz is a probability distribution), but one can also have signed, complex-

valued, or vector-valued fuzz, of course. 

MathWorld (13) defines convolution as: 

 “[A]n integral that expresses the amount of overlap of one function   as it is shifted over another 

function  .  It therefore ‘blends’ one function with another.”  

Fortunately, MathWorld gives pictures to make the concept clearer with two illustrations. The first 

shows two boxcar functions (e.g. functions that have a fixed value for a specific range): 
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Above we see that “f” (red) is being convolved with “g” (blue) to produce the green function. In this 

example, the “g” box is moving from the left to the right. The above graph is a snapshot of this moving 

process exactly when the middle of “g” was at -0.6. We can measure that the height of “g” is 0.5 and the 

width of the overlap at this instant in time is approximately 0.15. Therefore, the area that expresses the 

overlap (gray) is the product of the width multiplied by the height which is 0.5 * 0.15 = 0.075. As you can 

see, the green curve at t = -0.6 is indeed what we expect (~0.075).  The annotated graph looks like this: 
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A key point about the “convolution” graph is that every single point on it is a measure of the total 

overlap between the “f” and “g” functions. In other words, it’s the total overlapping area from      

to    . 

We’ll now use some calculus to express this overlap more formally in order to come up with a formula 

to compute its value. For a given instant in time  , the convolution of   and  , written as          

will express the entire area of overlap of the two functions. Therefore, we already know that the integral 

will be something like this: 

                                                      
 

  

 

It’s easy to get confused by the variables above. Instead of using the normal   to indicate the particular 

point where we want to compute the convolution, we’ll use the Greek letter   (tau) to indicate that 

we’re evaluating the convolution for a specific point on the   axis. That is, we’ll use the similar looking   

and   to denote that we’re talking about the same axis: 

                                                      
 

  

 

It is very important to see that the integral is    and not   . In other words,   is constant for the entire 

integral while   covers the range of the entire line. 
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Now we must figure out the value of “                                         which is what the integral 

sums. That is, we want to figure out how to calculate the height of the overlapping region for any   

when   is fixed. Once we have the height, we can calculate the infinitesimal area by multiplying it by   . 

NOTE: The following transition of a convolution definition is a little vague and “hand-wavy.” Please 

feel free to email me if you have a more intuitive definition of how convolution works. 

By definition (14), a convolution of two functions “f” and “g” is defined as “the integral of the product of 

two functions after one is reversed and shifted.” If “f” and “g” are Gaussian, we have: 

      
 

     
 

 
      

 

   
 

and       
 

     
 

 
      

 

   
 

 

Plugging these into the definition of a convolution gives us the following result: 

                      
 

  

 

 
 

       

 
  

        
 

     
  

 

where  

            

and 

        
    

  

which implies 

    
      

    
  

 

   
    

  

We’ll need to prove this. In (10), the author uses Fourier transforms and clever substitutions to come up 

with the result. Although I’ve heard of Fourier transforms and their ability to go between frequency and 

time domains, it was a bit too much to follow. Calin Miron was kind and contacted me with a simpler 

derivation (15) that I include and expand upon here:   

First, we’ll head back to the definition of a convolution: 

                      
 

  

 

Substituting in our Gaussian definitions for “f” and “g”: 
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Collecting constants: 

    
 

     

 
 

     

  
 

        
 

   
 

  
 

      
 

   
 

  
 

  

 

    
 

      
  

 
        

 

   
 

  
 

      
 

   
 

  
 

  

 

          
 

      
  

 
        

 

   
 

  
 

      
 

   
 

  
 

  

 

This integral is too complicated, so we’ll need to simplify it by making some substitutions. If we look at 

the numerators, we can see that       
 

 is simpler than         
 

 so let’s try making a 

substitution of: 

       

We now need to represent        in terms of  . We’ll call this other term   and then solve for it: 

            

                 

               

               

           

           

             

As mentioned earlier, we have set 

            

This further simplifies  : 

             

          

We now can substitute   and   back into our original integral. However, we have to be careful because 

the previous integral was    and now the  ’s have been substituted. This isn’t a problem because both   
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and   are just linear shifts of   which had infinite limits, therefore the limits of integration can remain 

the same: 

          
 

      
  

 
        

 

   
 

  
 

      
 

   
 

  
 

  

 

                        
 

      
  

 
      

   
 

  
 

  

   
 
  

 

  

 

We recall that  

          

So we can rewrite 

          
 

      
  

 
      

   
 

  
 

  

   
 
  

 

  

 

                    
 

      
  

 
      

   
  

  

   
 

  
 

  

 

We can now make a common denominator in the exponent of    
   

  by multiplying by the appropriate 

numerator on each term: 

  
 

      
  

 
  

       

   
   

  
  

   

   
   

 

  
 

  

 

  
 

      
  

  
  

       

   
   

  
  

   

   
   

  

  
 

  

 

 

And now we can collect things since we have a common denominator: 

  
 

      
  

 
  

           
   

   
   

 

  
 

  

 

Expanding the       exponent: 

  
 

      
  

 
  

               
   

   
   

 

  
 

  

 



49 
 

  
 

      
  

 
  

                  
   

   
   

 

  
 

  

 

  
 

      
  

 
  

                
   

   
   

 

  
 

  

 

  
 

      
  

 
  

       
      

       
   

   
   

 

  
 

  

 

  
 

      
  

 
  

      
       

      
   

   
   

 

  
 

  

 

  
 

      
  

 
   

    
        

      
   

   
   

 

  
 

  

 

 

We can now substitute back in     
    

    
 : 

  
 

      
  

 
    

       
      

   

   
   

 

  
 

  

 

Breaking up the exponential part: 

  
 

      
  

  
    

       
   

   
   

    
  

   

   
   

  

  
 

  

 

  
 

      
  

  
    

       
   

   
   

  

 
  

  
   

   
   

  

  
 

  

 

Because we are integrating with respect to  , we can treat the  

             as constant: 

  
 

      
 

  
  

   

   
   

  

  
  

    
       

   

   
   

  

  
 

  

 

Canceling out the   
  constant on the left of the integral: 
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We will now use the “completing the square” technique described in (11) for  : 

    
       

             
 

    

For some   and   

We can figure out what these values should be by expanding the right side: 

    
       

             
 

    

    
       

                          

    
       

        
                        

    
       

        
                 

We can simplify by subtracting     
    from both sides: 

    
                  

Now, we can eliminate the    part if we set  

      

This gives us: 

    
                   

    
             

Leading to the simplification: 

  
           

  
         

        
   

  
  

  

    
 

Thus, we can go back to our original equation: 

    
       

             
 

    

And substitute back in our values: 



51 
 

    
       

             
 

     

        
  

  

    
 

 

  
  

  

    
 

 

 

We can now pick up where we left off: 

          
 

      
 

  
  

   
  

  
  

    
       

   

   
   

  

  
 

  

 

And substitute in our completed square 

  
 

      
 

  
  

   
  

  
  

         
 
   

   
   

  

  
 

  

 

Breaking apart the exponent: 

  
 

      
 

  
  

   
  

  
 
          

 
   

   
   

  

  
 

  

 

  
 

      
 

  
  

   
  

  
 
          

 

   
   

   
  

   
   

  

  
 

  

 

  
 

      
 

  
  

   
  

  
 
          

 

   
   

  

 
  

  

   
   

  

  
 

  

 

We recall that  

  
  

  

    
 

And thus does not depend on   and thus the rightmost part of the integral,  
  

  

   
   

  

  can be moved 

outside the integral: 

  
 

      
 

  
  

   
  

 
  

  

   
   

  

  
 
          

 

   
   

  

  
 

  

 

We can start to substitute the value of  : 
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And simplify: 

  
 

      
 

  
  

   
  

 
  

  
   

   
     

  

  
 
          

 

   
   

  

  
 

  

 

Grouping together the exponential constants: 

  
 

      
 

  
  

   
  

  
   

   
     

  

  
 
          

 

   
   

  

  
 

  

 

Creating a common denominator for the exponential constant: 

  
 

      
 

  
      

 

   
     

  
  

   

   
     

  

  
 
          

 

   
   

  

  
 

  

 

  
 

      
 

 
       

    
   

   
     

  

  
 
          

 

   
   

  

  
 

  

 

We recall that: 

    
      

    
  

 

   
    

  

And substitute this back in to the constant part: 
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We can eliminate   by recalling that          , so we obtain: 

          
 

      
 

 
         

 

     
  

  
 
          

 

   
   

  

  
 

  

 

We’re now getting close to what we expected. We remember that a normalized Gaussian with mean    

and standard deviation    is defined as: 

      
 

     

 
 

      
 

   
 

 

This very closely matches the constant multiplier of our integral. We’re just off by a constant factor. We 

need to figure out this factor to make the convolution properly normalized. This will require us to 

calculate: 

    
 
          

 

   
   

  

  
 

  

 

   
  

         
 

   
   

  

  
 

  

  

We once again simplify the numerator by a substitution: 

          

Again, we recall that we were    so we’ll need to now change to   . We can take the derivative of each 

side: 

           

This substitution won’t change the limits of integration because they were infinite before and all we did 

was a linear shift. This gives us: 
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Factoring out a constant: 

 
 

    
  

  
  

   
   

  

  
 

  

 

We’d like to further simplify the integral by making yet another substitution. We notice all the squared 

terms and propose: 

    
  

   
   

  

 
 

      

 

Our existing integral is currently with respect to   . We’ll need to make it with respect to   . Again, this 

won’t affect the limits of integration, but it will affect the derivative as: 

   
  

      

 

Substituting this back into the integral gives us: 

  
 

    
  

  
  

   
   

  

  
 

  

 

 
 

    
         

 

  

         

Rearranging the constant: 

 
      

    
         

 

  

 

Now, we can use the result that we derived on page 38, namely that 

     
  

 

  

    

To give us: 
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We can now go back to our previous result and substitute in  : 

          
 

      
 

 
         

 

     
  

  
 
          

 

   
   

  

  
 

  

 

  
 

      
 

 
         

 

     
  

 
       

    
  

   
       

    
  

 

      
  

 
         

 

     
  

  

   
       

          
  

 
         

 

     
  

 

  
   

      
  

 
         

 

     
  

  

  
   

          

  
 
         

 

     
  

 

  
 

       

  
 
         

 

     
  

 

Thus, we finally have proved the formula for the convolution of two Gaussian functions: 
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